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INFLUENCE OF AN ABRUPT CHANGE IN THE THERMAL BOUNDARY CONDITIONS 

ON THE TURBULENT BOUNDARY LAYER ON A PLATE 

L. N. Drozdova and A. L. Sorokin UDC 532.526 

The development of the thermal boundary layer within a dynamic layer that has already 
been formed is a situation that is often encountered in the practice of analyzing heat ex- 
changers. The formulation of this problem is represented schematically in Fig. I. A homo- 
geneous thermal flux qw acts on a plate with section x = x 0 (x 0 is the length of the un- 
heated section), or the surface temperature changes to T w by a "jump." Here 6o is the thick- 
ness of the dynamic boundary layer in the section of the "jump," L is the length of the heat 
transfer section, and u e and T e are the rate and temperature of the main flow. The flow 
is quasiisothermal. This problem is solved by integral methods in [i, 2]. But this ap- 
proach is inadequately general since it requires additional empirical information. More- 
over, it is difficult to obtain a detailed flow pattern by the integral method. 

The Patankar-Spalding finite-difference method of solving the system of boundary layer 
differential equations is used in this paper to solve the formulated problem. The method 
underestimates the value of the Stanton number St, especially near the section x = x0, where 
the discrepancy between the experimental results and a computation is about 40% for the data 
from [2] and about 15% for data from [3]. 

The method mentioned was also applied by other authors [4] to solve an analogous prob- 
lem. They visibly experienced similar difficulties since they selected the turbulent Prandtl 
number Pr T over the boundary layer section to obtain agreement between experiment and theory 
in the "jump" zone. The computation was performed with the variable 

~ [ t - e x p ( - y / ~ l  (1) 
PrT(y) = n n [ i -  exp(-- y/B)]  '~ 
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recommended in [5]. Let us note that a constant value of Pr T was used in the original meth- 
od [6]. 

However,, neither the application of (i) nor the increase, recommended in [4], in the 
number of points of the computational mesh in the viscous sublayer resulted in any substan- 
tial improvement in the results. Analysis of the nature of the discrepancy between the re- 
sults of the computation and the experiment permitted the assumption that the reason is the 
formulation, proposed in [6], of the boundary condition for the heat-transfer equation at 
the wall. To simplify the computations near the wall, a one-dimensional Couette flow model 
was taken in which the convective heat transfer along x was neglected. The temperature 
gradient along the length should be taken into account for an abrupt change in the boundary 
conditions. 

The dependences Cf = Cf(Rey) and St = St(Rey) were determined from the solution of the 
model problem [6] and were utilized in formulating the boundary conditions. 

A formulation of the model problem with the component 8T/ax taken into account is pro- 
posed, wherein the heat transfer near the point of the abrupt change in the thermal condi- 
tion can be described approximately by the equation 

aT O / OT \ ( v ~, ) 

with the initial condition T(x0, y) = T e and the boundary conditions T(x, ~) = Te, aT/ 
8yly= 0 = -qw/% [or T(x, 0) = T w] for x > x 0. The velocity profile u(y) was calculated from 
the analytic dependence [7] 

(Ku+)Z (Ku+) a (Ku+) a] 
y + = u + + e x p ( - - A )  e x p ( K u + ) - - i - - K u  + -  2! 3! ~ J' 

where A = 2.(35 and K = 0.41. Values of the turbulent viscosity ~T found from the formula 

31' 6,u l[l_exp(__y+/A)]2 and Pr T calculated from (i) were taken to calculate the ef- 
i 

% = (0.435y) ~ 

fective thermal conductivity. 
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The dependence St = St(ReAx) [ReAx = uT(x -- x0)/v] represented in Fig. 2 in the form 
of the function log St of logReAx for two versions of the change in the thermal condition 
on the wall was determined from the solution of the modified model problem (the points are 
the numerical solution and the lines are the parabola approximation). It is seen from the 
graph that the curve for a given flux (line i) passes above the curve for a given wall tem- 
perature (line 2). Moreover, for the first case the abscissa of the emergence of the curve 
"on the shelf" is greater than for the second. This latter means that the zone of action 
of the correction function for a given temperature is less than for the given flux. 

The numerical results obtained were approximated by the analytical expression St(ReAx) = 

i0 f(ReAx). Here f(ReAx) = P0 + pl(logReAx) + p2(logReAx)2; P0 = -1.3738, Pl = -0.5609, 
P2 = -0.06305, 0 ~ ReAx ~ 30,000 for the given flux, while P0 = -1.4044, Pl =-0.535, P2 = 
0.0622 for a given temperature. 

The approximation in the Patankar-Spalding program was introduced in the form of the 
correction function ~(ReAx) = St(ReAx)/St0, where St 0 is the value of the Stanton number 
at the point x = x0, evaluated according to the standard dependence St 0 = 0.0252/ReT **~ 

The results of computations performed by using the correction introduced are represented 
in Figs. 3 and 4. Shown in Fig. 3 is the change in the Stanton number along the heat-trans- 
fer section for u e = 51, 30.1, 84.35, and 84.35 m/sec; T e = 21, 24.3, 22.1, and 22.1~ and 
qw = 6145, 9813, and 17,550 W/m2; T w = 100~ (lines 1-4, dashed lines are the computation 
by the Patankar-Spalding method; the continuous lines are by the same method with the correc- 
tion function @ (ReAx); i is experiment [3], and 2 and 3 are [2]. The notation in Fig. 4 
is the same as in Fig. 3. As is seen, the agreement between computation and experiment has 
improved considerably. 

Because of the inaccessibility of experimental data for a "jump" in the surface tempera- 
ture to the authors, a test problem analogous to that represented in Fig. I was solved. The 
surface temperature measured in an experiment [2] (line 3 in Fig. 4) was used as thermal 
boundary condition. As is seen from Fig. 3, the Patankar-Spalding method describes the heat- 
transfer process near the section with the "jump" poorly even for this boundary condition. 
Introduction of the correction function analogously to the case of a given thermal flux re- 
sults in improvement of the agreement between the computation and the experiment. 

Therefore, taking account of the longitudinal convective transfer in the formulation 
of the boundary condition permitted computation of the heat transfer near the section of 
the discontinuity in the thermal state of the surface with good accuracy. 

The Patankar-Spalding program with the correction function inserted can be used to solve 
analogous problems. 
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